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EXPONENTIAL AND LOGARITHMIC

SERIES &  MATHEMATICAL INDUCTION

EXPONENTIAL & LOGARITHMIC SERIES

1. The number e

The sum of the infinite series 
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Note :

(i) The number lies between 2 and 3. Approximate value of e = 2.718281828.

(ii) e is an irrational number. (i.e., e Q)

2. Exponential Series

Expansion of any power x to the number e is the exponential series.

i.e.,
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(i) Exponential theorem :

Let a > 0 then for all real value of x,
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(ii) Some standard deductions from exponential series :
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[2] Mathematical Induction
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3. Logarithmic Series : If ( |x | < 1 ), then
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Some standard deductions from logarithmic series :
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Note :

(i) Naperian or Natural log can be converted into common by using following relation :

log10 N = loge N × 0.43429448
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MATHEMATICAL INDUCTION

Mathematical statement:

Statements invovling mathematical reations are known as the mathematical statements. For example: 2 divides
16, (x + 1) is a factor of x2–3x+2.

The priciple of mathematical induction:

(i) First principle of mathematical induction:-

Let P(x) be a statement involving the natural number in such that

(i) P(1) is true i.e. P(n) is true for n = 1.

(ii) P(m+1) is true whenever P(m) is true.

then P(n) is true for all natural numbers n.

(ii) Second principle of mathematical induction:

Let P(n) be a statement involving the natural number n such that

(i) P(1) is true

(ii) P(m+1) is true, whenever P(n) is true n , where 1 n m  .

then P(n) is true for all natural numbers.
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